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1. Formulation of the problem. We shall take a rod (shaft) of 

variable section to mean a body formed by the rotation of some plane 
curve L about an axis lying in the same plane as the curve. 

Let us consider a system of cylindrical coordinates r, z, C$ with the 
z-axis as the axis of the shaft. Let us suppose that the load applied to 
the body is distributed symmetrically about the z-axis and that it acts 
in a direction perpendicular to the plane 4 = const. In this case the 
displacements of points of the shaft will also be distributed synnnetric- 
ally, i.e. they wi 11 be independent of $. We can assume that the dis- 
placements v(r, z) take place in a direction perpendicular to the plane 
4 = const. 

With these assumptions the equations of elastic equilibrium in terms 
of displacements reduce to the single equation 

Equation (1.1) is closely related to the Laplace equation given in 
[l 1. Putting u(r, z, q5) = v(r, z) e’+ we have Au = 0. 

With stresses given on the surface of the shaft, in order to simplify 
the boundary condition it is expedient to replace the function v(r, z) 

by a stress function QP(r, z) related to u(r, z) by the expressions 

a v 1 aQ &I 1 aQ p--_=--_--, 
ar P rJ dz 

p--Z’-- 
8Z rL Br 

p is the shear 
modulus_ 

(1.2) 

‘lhe function Q(r, z) satisfies the equation 
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'Ihe stresses can be expressed in terms of Nr, z) by the formulas 

l'he remaining components of the stress tensor are zero. 

On the boundary L the values of @r, z) can easily be found from the 
known values of the stresses 

P.5) 

Here f(s) is a given function of the arc length s of the boundary L, 

and C is an arbitrary constant. 

2. The general solution of Equation (1.3) and the reduc- 
tion of the boundary problem to an integral equation, 1. Let 
us assume that 

O((r, 2) = PW(T, z) * (2.1) 

The function uf(r, z) satisfies the equation 

@W 
i- 

law 4 -- _--- 
dr2 r ar $ UlSZ$=O (2.2) 

Equation (2.21, which is related to the Laplace equation 
Af w (r, z)e2idi = 0, is considered in [l 1. The general solution to Equa- 
tion (2.2) is given by the integral [Z 3 

w(r, z) = Re{$( r cos h + iz) cos 2hdh 

0 
(2.3) 

Here $(e + iz) is a function, regular within the area formed by an 
axial section of the shaft [it is assumed that any line perpendicular to 
the z-axis intersects the boundary L at one point only); also, the func- 
tion $ must satisfy the requirement that Re fle + iz) = J3e $(- t+ iz), 
i.e. the requirement that it is even with respect to F. 

(2.3) is not a unique solution; any linear function ar + b can be 
added to 4G(t) (which was not pointed out in El I). 

After integrating twice by parts we can express dr, z) as an integral 
which satisfies the uniqueness theorem 
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w (r, z) = r2 1 Re x (r cos h + iz) sin4 hdh (x CT)= 0" (a (2.4) 

0 

7.hUS 

CD (r, Z) = r4 1 Re x (r cos h +- AZ) sin4 ldh P-5) 
0 

If we now put x= const we obtain the solution to the problem of a 
circular cylindrical shaft subjected to a torque applied at infinity. 

We cau therefore try to find a solution to the problem of torsion in 
a cylindrical notched shaft in the form (2.51, putting x(r ) = c + X0 (r ), 
where x, (r ) is a function which vanishes at infinity. 

In solving a problem on torsion in an infinitely long shaft with 
different diameters at opposite ends we assume that 

x (4 = ic ln (% I%) + x&) + Cl (Ti==z--rzo, zz=z+Z*) 

where c and c1 are real constants and ra is any point lying outside a 

meridian section of the shaft. Formula (2.5) can also be written in the 
form 

Q(r, z> = [ Ra x (E -+ iz) (r” -5”)“dj=2SR~x(5+iZ)(~2-12)*/gdS (2.6) 

--r 0 

The function u(x, y, z) = w(r, zle2i+ is, in fact, even with respect 
to x and y. Therefore, do/a F = 0 at r = 0, and from (2.3) we have 
that Re $‘(iz) = 0, i.e. Re x(c + iz) is an even function with respect 
to t* 

(2.6) can be considered as a Volterra integral equation of the first 
kind in the uuknown Re J&$ + iz) if we take r as a parameter and @(r, z) 

as a known function of r. This Volterra equation can be solved with the 
aid of a Riemauu-Mellin integral transformation. In this way it can 
be shown that (2.5) is the general solution to Equation (1.3). 

Rutting 4 = (sr -+ iz, I = F + iz, we have from (2.6) that 



where 

The boundary I is shorn in Fig. 1* Further, 

it is known [3 I that the function x0 (7 1, which 

is regular within the boundary L'+ II.-, where 

L" is the mirror image in the z-axis, can be 

expressed uniquely by an integral of the Guchy 

type with a real density (P(t) 

Here ds is an element of arc length, t is the 
complex coordinate of a point on the boundary 

L++ I;“, From (2.7) and (2.8) WC: have 

Fig, 1. 

rD (7, 2) = - s cp (t) CD, (t, 7;) ds -j- r-4 const (2.9) 

L”+z 

ad>, ft , Z> = - Re 

cP,(-z, z) = -q)(t, z) 

and from (2.91 we have 

The integral expression 

tion v(t), is more general 

1 
fZ,lO), which contains an arbitrary real func- 
than (2.5): it can be used far the solution 

of problems on torsion of hollow shafts with the cavity formed by bodies 

of revolution. 

Let t0 be a point on the boundary L; then from (2.10) as r + t,, we 

obtain for the unknown v(t) an integral equation of the first kind 

a given function. 

Fredhofm equation 

&,I ds = f (GJ (2.11) 

An equation of the type (2.11) can be 

of the second kind II 3. In practice, 



however, it is more 

3. Torsion of 
Let us suppose that 
notch, and that L,+ is the upper cylindrical 

portion of the boundary L. L,-, L2- are the 
corresponding parts of the lower portions of 
the boundary L. 
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convenient to solve Equation (2.11) directly. 

a cylindrical shaft with a peripheral notch, 
Llf is the upper portion of the boundary of the 

We shall denote the torque at infinity by 
M, the radius of the cylindrical portion of 
the shaft by R, and the radius of the 
narrowest part of the shaft at the bottom of 
the notch by R,. 

t := t’ Z %’ A in’ on I& t=t”=.t”-j-iq’ onL2 

We shall seek a stress function in the 
form 

@(I*, 2) = \ v @)(I+ (P, z) ds f gr4 (3.1) 
L 

Fig. 2. 

From the condition on the boundary L it follows that 

and in view of syrnnetxy with respect to the r-axis, we obtain the inte- 
gral equation 

f v1 (t’) CD, (t’, t) ds’ -+- f v2 (t”) (I$ (t”, z) ds” = f (z> (34 
Here ‘I+ .L;+ 

(0 on L, 

f CT) = ‘\ (M,l,n) (A4 - r4) on Lx, 

/ vl (t’) on & 
Y(t) = y ti) = \ Ya(ty on Lz 

Obviously Q*(t, -i: ) = a,( t, r 1. lherefore, if we satisfy the integral 
equation on the upper boundaries LIT and L2+, we automatically satisfy 
at the same time the condition that’(?(r, .z) = ER “/2n on the lower 
boundaries L - 1 and 15,~. 

By altering the variables we can transform Equation (3.2) into a 
system of integral equations of the first kind over the interval (1, 0): 
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(3.3) 

We shall consider that with this change of variables the point x = 0 
corresponds to the point t ’ = R, aird t” = i m + R. 

The functions under the integral signs in (3.3) have an infinite 
second derivative for n = y. In a numerical solution of the problem, 
therefore, it is expedient to apply to these integrals the quadrature 
formula of Nikolskii 14. 1 

k=O 

(3.4) 

which is most suitable for the class of functions W(l) (M, 0.1) for a 
given natural m. Setting y = yk = (2 k+ 2)/(2m+- 1) in Equations (3.31, 

we obtain a set of (2m +l) linear algebraic equations in (2tt1 +l) un- 
knowns ak = a(xL), b, = b(xk) and a(0). After solving this set of eqna- 
tions we can find an approximate expression for @(r, 2): 

The computer “Strela” at the Computer Center of Moscow University was 
used to give a solution for a shaft with a semicircular notch with the 
following data: 

We give below values of the coefficient k found for a number of 
different values of X = p/B 



The problc~ of torsion of shafts 1589 

k" =10.67 19.53 46.60 1 / 1 1 j/j 1 

0.3 0.4 

3.888 5.780, 

4.485 6.613 

0.8 0.9 

145.8 1257 

138.9 1053 

The calculation for each value of X takes 

8 approximately three minutes on the “Strela”. 

The continuous curve in Fig. 3 has been 

4 
drawn from these results. As a comparison the 
approximate values of k = k” (the broken line 
in Fig. 3) given by the formula of R. Sonntag 

0 L?Z R4 11.5 2 

Fig. 3. k” = (I- h)S(l + h) 

have also been shown. 

It will be seen from Fig. 3,that, for large values of A, Sonntag’s 
formula, which is the one normally used in engineering analysis, gives a 
decreased coefficient of stress concentration. 
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